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ABSTRACT: In the gauge invariant formulation of U(1) chiral lattice gauge theories based
on the Ginsparg-Wilson relation, the gauge field dependence of the fermion measure is
determined through the so-called measure term. We derive a closed formula of the measure
term on the finite volume lattice. The Wilson line degrees of freedom (torons) of the link
field are treated separately to take care of the global integrability. The local counter term
is explicitly constructed with the local current associated with the cohomologically trivial
part of the gauge anomaly in finite volume. The resulted formula is very close to the known
expression of the measure term in infinite volume with a single parameter integration, and
would be useful in practical implementations.
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Chiral gauge theories have several interesting possibilities in their own dynamics: fermion

number non-conservation due to chiral anomaly [l], P, various realizations of the gauge

symmetry and global flavor symmetry [[, li], the existence of massless composite fermions

suggested by 't Hooft’s anomaly matching condition [§] and so on. Unfortunately, very

little is known so far about the actual behavior of chiral gauge theories beyond perturbation

theory. It is desirable to develop a formulation to study the non-perturbative dynamics of

chiral gauge theories.

Lattice gauge theory can now provide a framework for non-perturbative formulation of

chiral gauge theories. The clue to this development is the construction of gauge-covariant



and local lattice Dirac operators satisfying the Ginsparg-Wilson relation [J—[1].! By this
relation, it is possible to realize an exact chiral symmetry on the lattice [B4]. It is also
possible to introduce Weyl fermions on the lattice and this opens the possibility to formulate
anomaly-free chiral lattice gauge theories [BJ—[g]. Although it is believed that the chiral
gauge theory is a difficult case for numerical simulations because the effective action induced
by Weyl fermions has a non-zero imaginary part, still it would be interesting and even useful
to develop a formulation of chiral lattice gauge theories by which one can work out fermionic
observables numerically as the functions of link field with exact gauge invariance.

In the case of U(1) chiral gauge theories, Liischer [Bf] proved rigorously that it is
possible to construct the fermion path-integral measure which depends smoothly on the
gauge field and fulfills the fundamental requirements such as locality, gauge-invariance,
integrability and lattice symmetries.? In this formulation, however, although the proof of
the existence of the fermion measure is constructive, the resulted formula of the fermion
measure turns out to be rather complicated for the case of the finite-volume lattice. In
particular, to take into account the requirements of locality and smoothness, it is based on
the procedure to separate the part definable in infinite volume and the part of the finite
volume corrections. Therefore it does not provide a formulation which is immediately
usable for numerical applications. The purpose of this paper is to present a simple and
closed expression of the fermion measure (term) for the U(1) chiral lattice gauge theories
defined within the finite-volume lattice.

This paper is organized as follows. In section |, we review the construction of U(1)
chiral lattice gauge theories based on the Ginsparg-Wilson relation and the reconstruction
theorem of the fermion measure formulated by Liischer [Bg]. In section fj, we describe our
construction of the fermion measure term on the finite-volume lattice, which fulfills all the
required properties for the reconstruction theorem. In our formulation, the Wilson line
degrees of freedom of the link field (torons) are treated separately: we first construct the
measure term for these degrees of freedom to take care of the global integrability. The part
of local counter term is then explicitly constructed with the local current associated with
the cohomologically trivial part of the gauge anomaly in finite volume. Combining these
results, we finally obtain a closed formula of the measure term on the finite volume lattice,
which is similar to the known expression of the measure term in the infinite volume with

L An explicit solution of the Ginsparg-Wilson relation was derived from the overlap formalism proposed
by Narayanan and Neuberger [@f@] and is referred as the overlap Dirac operator. The overlap formalism
gives a well-defined partition function of Weyl fermions on the lattice, which nicely reproduces the fermion
zero mode and the fermion-number violating observables ('t Hooft vertices) [@7@] Through the recent
re-discovery of the Ginsparg-Wilson relation, the meaning of the overlap formula, especially the locality
properties, become clear from the point of view of the path-integral. For Dirac fermions, the overlap
formalism provides a gauge-covariant and local lattice Dirac operator satisfying the Ginsparg-Wilson rela-
tion [ﬂ ﬂ, E, E7 E] The overlap formula was derived from the five-dimensional approach of domain wall
fermion proposed by Kaplan [@] In the vector-like formalism of domain wall fermion [@f |, the local
low energy effective action of the chiral mode precisely reproduces the overlap Dirac operator f@]

2The gauge-invariant construction by Liischer [@] based on the Ginsparg-Wilson relation provides a
procedure to determine the phase of the overlap formula in a gauge-invariant manner for anomaly-free U(1)
chiral gauge theories.



one parameter integration. Section [ is devoted to summary and discussions.

2. U(1) chiral gauge theories on the lattice with exact gauge invariance

In this section, we review the construction of U(1) chiral lattice gauge theories with ex-
act gauge invariance given by Liischer [Bf]. We consider U(1) gauge theories where the
gauge field couples to N left-handed Weyl fermions with charges e, satisfying the anomaly
cancellation condition,

N
el =o. (2.1)
a=1

We assume the four-dimensional lattice of the finite size L and choose lattice units,
I'={z=(v1,22,23,24) €Z*| 0< 2, < L(p=1,2,3,4)}, (2.2)
and adopt the periodic boundary condition for both boson fields and fermion fields.

2.1 Gauge fields

We adopt the compact formulation of U(1) gauge theory on the lattice. U(1) gauge fields on
I" then are represented by link fields, U(x, ) € U(1). We require the so-called admissibility
condition on the gauge fields:

|Fu(x)| < e for all z, u, v, (2.3)
where the field tensor F),, (z) is defined from the plaquette variables,
1
Fu(xz) = ElnPW(:L"), - < F(x) <m, (2.4)
Pu(x) = Uz, m)U(x + f,v)U(x + 0, p) Uz, v) 71, (2.5)

and € is a fix number in the range 0 < € < 7/3. This condition ensures that the overlap
Dirac operator [, ] is a smooth and local function of the gauge field if |ey|e < 1/30 for all
a [[J]. The admissibility condition may be imposed dynamically by choosing the following

action,
1
8¢ =13 DY L), (2.6)
g() SCEF w,v
where
B @) {1~ (B @]/} i B ()] < c
L(x) = nv e v ’ (2.7)
o0 otherwise.

The admissible U(1) gauge fields can be classified by the magnetic fluxes,

L-1

> Ful(x+ s+ o), (2.8)
s,t=0

1

My, = —

o on

which are integers independent of x. We denote the space of the admissible gauge fields
with a given magnetic flux m,, by U[m]|. As a reference point in the given topological



sector H[m], one may introduce the gauge field which has the constant field tensor equal
to 2mm,,, /L*(< €) by
Vv[m] (m,,u) — e—%gi[Lf;iu,L—l Dsp M+, muufu] (‘%H =z, mod L) (29)

Then any admissible U(1) gauge field in $[m] may be expressed as

where U (x, p) stands for the dynamical degrees of freedom. Accordingly, any local variation
of the link field U(z, 1) € U[m] should refer to U(z, p):

U (x, 1) = {6U (2, 1) } Vipmy (, ). (2.11)

U(1) gauge fields on T" with the periodic boundary condition may be represented
through periodic link fields on the infinite lattice:

U(z,p) € U(1), x €7, (2.12)
U(x+ Lo, p) = Uz, p) for all p,v. (2.13)
2.2 Weyl fields

Weyl fermions are introduced based on the Ginsparg-Wilson relation. We first consider
Dirac fields ¢ (z) which carry a Dirac index and a flavor index aw = 1,..., N. Each compo-
nent 1, () couples to the link field, U(z, u)®. We assume that the lattice Dirac operator
acting on () satisfies the Ginsparg-Wilson relation,?

vsDr, + DrAs =0, 45 = v5(1 — 2Dp), (2.14)

and we define the projection operators as

. 144 1+
Py = BY, py= B (2.15)

2 2
The left-handed Weyl fermions, for example, can be defined by imposing the constraints,
Yo (z) = Pip(x), P-(x) =P(z)Py. (2.16)

The action of the left-handed Weyl fermions is then given by
Sw =Y _¥_(x)Drip_(x). (2.17)
zel

The kernel of the lattice Dirac operator in finite volume, Dy, may be represented
through the kernel of the lattice Dirac operator in infinite volume, D, as follows:

Dy(x,y) = D(w,y)+ Y. D(x,y+nL), (2.18)
nezZ* n#£0

3In this paper, we adopt the normalization of the lattice Dirac operator so that the factor 2 appears in
the right-hand-side of the Ginsparg-Wilson relation: 5Dy, + Drvys = 2DpvsDy.



where D(x,y) is defined with a periodic link field in infinite volume. We assume that
D(z,y) posseses the locality property given by

1Dz, y)ll < C(1+ |l —y|7) e~ lemvl/e (2.19)

for some constants ¢ > 0, C > 0, p > 0, where o is the localization range of the lattice
Dirac operator.

2.3 Path-integral measure of Weyl fermions

The path-integral measure of the Weyl fermions may be defined by the Grassmann inte-
grations,

Dl D[] = [[ des [] dew. (2.20)
J k
where {c;} and {¢;} are the grassman coefficients in the expansion of the Weyl fields,

vo(2) =) vi(a)e;, Po(x) =) avi(x) (2.:21)
J k

in terms of the chiral (orthonormal) basis defined by
P_vj(x) = vj(x), Op(z)Py = p(z). (2.22)

Since the projection operator P depends on the gauge field through D, the fermion mea-
sure also depends on the gauge field. In this gauge-field dependence of the fermion measure,
there is an ambiguity by a pure phase factor, because any unitary transformation of the
basis,

vj(x) = Zvl(:n) (Q_l)lj , ¢ = Z Qjicy, (2.23)

l l

induces a change of the measure by the pure phase factor det @. This ambiguity should
be fixed so that it fulfills the fundamental requirements such as locality, gauge-invariance,
integrability and lattice symmetries.

2.4 Reconstruction theorem of the Weyl fermion measure

The properties of the fermion measure can be characterized by the so-called measure term
which is given in terms of the chiral basis and its variation with respect to the gauge field,
U (2, 1) = inu(2)U(z, p), as
Ly =1 (v),6,05). (2.24)
J

The reconstruction theorem given in [B6] asserts that if there exists a local current j,(x)
which satisfies the following four properties, it is possible to reconstruct the fermion measure
(the basis {vj(x)}) which depends smoothly on the gauge field and fulfills the fundamental

requirements such as locality,* gauge-invariance, integrability and lattice symmetries:®

4We adopt the generalized notion of locality on the lattice given in [@, @, @] for Dirac operators and
composite fields. See also [@] for the case of the finite volume lattice.
5The lattice symmetries mean translations, rotations, reflections and charge conjugation.



Theorem 1. Suppose j,(x) is a given current with the following properties:S

1. ju(z) is defined for all admissible gauge fields and depends smoothly on the link vari-
ables.

2. ju(x) is gauge-invariant and transforms as an azial vector current under the lattice
symmetries.

3. The linear functional £, = > cr 1u(2)ju(x) is a solution of the integrability condition

0y — 8¢Ly = iTep { P[6,P- 6P} (2.25)
for all periodic variations n,(x) and ,(z).

4. The anomalous conservation law holds:
Opip(x) = tr{Qvs5(1 — Dr)(z,z)}, Q = diag(ey, ..., en). (2.26)

Then there exists a smooth fermion integration measure in the vacuum sector such that the
associated current coincides with j,(x). The same is true in all other sectors if the number
of fermion flavors with |e,| = e is even for all odd e. In each case the measure is uniquely
determined up to a constant phase factor.

A comment is in order about the topological aspects of the reconstrtuction theorem.
As discussed in [BG], it is possible to associate a U(1) bundle with the fermion measure.
In this point of view, the measure term, £, defined by eq. (R.24), can be regarded as
the connection of the U(1) bundle, and the quantity which appears in the r.h.s. of the

integrability condition eq. (£.23),
€ = iTr, {15_[5,715_,5415_]} , (2.27)
is nothing but the curvature of the connection,
Cpe = 0pLe — 0Ly (2.28)

It is known that the integration of the curvature of a U(1) bundle over any two-dimensional
closed surface in the base manifold takes value of the multiples of 27. If one parametrize
a two-dimensional closed surface in the space of the admissible U(1) gauge fields by s,t €
[0, 27], then one has

2 2T
/ ds dt iTr {P_ [0s P, atP_]} = 27 X integer. (2.29)
0 0

If (and only if) the U(1) bundle is trivial, these integrals of the curvature vanishes iden-
tically. The integrability condition eq. (R.27) asserts that it is indeed the case and the
fermion measure is then smooth.

5Throughout this paper, Tr{---} stands for the trace over the lattice index z, the flavor index (=
1,..., N) and the spinor index, while tr stands for the trace over the flavor and spinor indices only. Trp{---}
stands for the trace over the finite lattice, z € T".



2.5 Constructive proof of the existence of the measure term

In [Bq], it is proved constructively that there exists a local current j,(x) which satisfies the
properties required in the reconstruction theorem. In fact, the construction of the current
is not straightforward by two reasons. The first reason is that the measure term must
be smooth w.r.t. the gauge field, but the topology of the space of the admissible gauge
fields in finite volume is not trivial. The second reason is that the locality property of the
current must be maintained even in finite volume. To take these points into account, the
construction in [Bg] is made in two steps by sperating the part definable in infinite volume
from the part of the finite volume corrections.

The procedure to sperate the part definable in infinite volume from the part of the
finite volume corrections is as follows. As eq. (B.1§), one may represent the kernel of the
chiral projector in finite volume P (z,y) through the kernel of chiral projector in infinite

volume, P(z,y) = %(1 — V5)0zy + %75D(:17,y), as

P_(z,y)= > P(z,y+nlL). (2.30)
neZ4
One may also introduce the projector Qr acting on the fields in infinite volume as

Y(x) ifx €T,

2.31
0 otherwise. ( )

Qry(r) = {

Using these, the right-hand-sides of the integrability condition eq. (B.2§) and the anomalous
conservation law eq. (R.26)) may be rewritten into

iTry, {15_ 6, P, 5<P_]} — v {QFP_ 16,7, 5415_]} + R, (2.32)
and
tr{Qy5(1 — Dr)(z,z)} = tr{Qv5(1 — D)(z,2)} + r(z), (2.33)

respectively, where :i,¢ and r(x) are finite-volume corrections,

Ry =i, >, > tr{P(z,y) (2.34)

€l y,z€Z4 neZ4 n#0
X [0y P(y, 2)0¢ P(z,x+Ln)—5:P(y, 2)0, P(z,x+Ln)]},

r(@) = > tr{Qys(1 - D)(w,z + Ln)}, (2.35)
nezZ* n#0
satisfying
[Rc] < 1L e8] o IC oo, (2.36)
Ir(z)| < Cpe /e (2.37)

for some constants k1 > 0, v;1 > 0 and C; > 0. These bounds follow from the locality
property of the lattice Dirac operator D in infinite volume eq. (R.19).



Then, as the first step, one constructs a local current j;(az) in infinite volume so that
1) it depends smoothly on the link variables, 2) it is gauge-invariant and transforms as an
axial vector current under the lattice symmetries, 3) the linear functional defined with a
periodic link variables,
8y = Y ()it (@), (2:38)
zel
is a solution of the integrability condition

6,8 — 0y = iTr {QrP_[3,P-, 6 P-] | (2.39)

for all periodic variations 7,(x) and (,(z), and 4) it satisfies the anomalous conservation
law in infinite volume,

iy (@) = tr{Q75(1 — D)(z, z)}. (2.40)
As the second step, one constructs the finite-volume correction to £,
&y = nu(@)Aju(x) (2.41)
zel
with the property
|Aj,(x)] < roL2e™L/e (2.42)

for some constants ko > 0, vo > 0, so that it satisfies the conditions 1) and 2) above and

0,6¢ = 06c6, = Ry, 0uAju(x) =r(z). (2.43)
The linear functional £, = &, + &,, then fulfills all the required properties for the measure
term on the finite-volume lattice.”

2.5.1 First step in infinite volume: locality

In the first step, the explicit expression of the local current ji(x) is obtained [B]. This is
based on the two facts which hold true in infinite volume.

The first fact is about the gauge anomaly associated with the Weyl fermions in the
U(1) chiral lattice gauge theories,

q(z) =tr{Qvs(1 — D)(z,x)} (x € ZY), (2.44)
which is topological by virtue of the Ginsparg-Wilson relation [B4, #d-EJ]:

Lemma 1. The U(1) gauge anomaly q(x) has the following form:
Q($) =7 <Z ei) E/w)\pF;w($)F)\p($ + o+ 19) + 8;];3#(33), (2.45)

where v is a constant and ku(x) s a local, gauge-invariant current, which can be constructed
so that it transforms as the axial vector current under the lattice symmetries. For the
anomaly-free multiple, the cohomologically non-trivial part of the gauge anomaly cancels
exactly at a finite lattice spacing and the total gauge anomaly is cohomologically trivial:

q(x) = k(). (2.46)

"In fact, the second condition in eq. () follows from the first condition and the gauge invariance of
Aju(e) B9




This result was shown in [BH, f4, Fg]. 7 is a constant which takes the value v = ﬁ

for the overlap Dirac operator [4g].

The second fact is about the representation of admissible link fields in terms of vector
potentials with the desired locality property:

Lemma 2. Suppose U(x, ) is an admissible gauge field on the infinite lattice. Then there
exists a vector potential A,(x) such that

Uz, p) =@ A, (2)] < w1+ 4])), (2.47)
Flu(z) = 0,A,(z) — 0,A,(x). (2.48)

Moreover, any other field with these properties is equal to A, (x)+ Ouw(x), where the gauge
function w(x) takes values that are integer multiples of 2.

An important property of this mapping is that the locality properties of the gauge
invariant fields are the same independently of whether they are considered to be functions of
the link variables or the vector potential. To see this, let us first consider a local field which
is composed from the link variables U(z, 11). Since the mapping A, (z) — U(z, ) = e*4»(@)
is manifestly local, this function is local with respect to the vector potential. In the other
direction, let us assume a gauge invariant local field ¢(y) depending on the vector potential
A, (z). Then we remind that it is free to change the gauge in constructing A,(z). In
particular, we may impose a complete axial gauge taking the point y as the origin. Around
y the vector potential A, (z) is locally constructed from the given link field U(z, ). Thus
¢(y) maps to a local function of the link variables U(x, 1) residing there.

Then, for a given admissible link field U (z, p) = e*4#(*)

and any variational parameter
nu(z) of compact support, one may define a linear functional £5 = > 74 n,(z)j}(z) by

the formula,

g=if s {P_[0.P-.6,P-])

1
+ /0 ds Y {nu(@)ku(@) + Au(x)d,ku ()}, (2.49)

xeZ4

where the differentiation and the integration with respect to the parameter s should be
performed along the one-parameter family of the admissible link fields defined by Us(x, u) =
¢54u(*)  This linear functional £ satisfies all the properties required to the measure term
in infinite volume. In particular, the current j7;(z) is a local functional of the link variables.
To see this property, we first note that it is local with respect to the vector potential A, (x)
because of the locality properties of the kernel of the projection operator p_ (z,y) and
the current k,(z). We next note that Jp(x) is invariant under the gauge transformations
A, (z) — Ay(x)+0,w(x) for arbitrary gauge functionsAw(a;) that are polynomially bounded
at infinity. Namely, taking the gauge covariance of P_(z,y) and the gauge invariance of



l;:u(x) into account, the change of £} is evaluated as

/ dsTr{P_[[wQ,I:’_],énP_]}—k/ ds Z pw(z) k()

0 0 xeZr

1 N 1 _
= —/0 dsTr{wQ5nP_}+/0 ds Z Opw() bk, ()

xeZ4

1
= /0 ds Z w(@) oy {—tr{Q s D}(x,x) — 0%k, ()} = 0,(2.50)

T€eZA

where the identity P_(Snp_ﬁ_ = 0 has been used. Then, we can regard jﬁ(:ﬂ) as a local
functional with respect to the link variables.

2.5.2 Second step in finite volume: smoothness

In the second step constructing the finite-volume correction &, which must be smooth
with respect to the link variables, one needs to know the topological structure of the space
of the admissible U(1) gauge fields in finite volume. It turns out that the space U[m] is
isomorphic to a multi-dimensional torus times a contractible space. Namely,

Ulm] = U1)* x &g x Alm], (2.51)

where B is the subset of the gauge transformations A(x) € U(1) satisfying A(z) = 1 at
x =0 mod L, Alm] is the space of the transverse vector potential AE(Q?) satisfying

O Al () =0, > Al(x) =0, (2.52)
zel
|0, AL (x) — 0, AT (x) + 27y /L] < e, (2.53)

and U(1)* comes from the degrees of freedom of the Wilson lines. In fact, the follow-
ing lemma provides a unique representation of U(x,u) and establishes the isomorphism

eq. (2:51) [Bq:

Lemma 3. The gauge fields U(x, 1) in the sector s\[m] are of the form
U@, 1) = Vi@, 1) &4 &) Uy (2, ) M) A + )7 (2:54)
where Ag(x) is the transverse vector potential in A[m] satisfying
AL (x) — 0,AT () + 2mmy /L? = Fy(2), (2.55)
Ulw) (, 1) represents the degrees of freedom of the Wilson lines,

wy ifw,=L-1,

otherwise,

with the phase factor w, € U(1) and A(x) is the gauge function in &g statisfying A(0) = 1.

— 10 —



Once the topology of the space {[m] is identified as a multi-dimensional torus times a
constractible space, the construction of the smooth finite-volume correction &, is achieved
based on the bound eq. (R.3() and the following mathematical fact:

Lemma 4. Suppose T™ is the n-dimensional torus parameterized through
u= (e, e ... en) and €y(t) is a smooth periodic tensor field on T™ satisfying

Cri = — €, 8k€1j + 8lQ:jk + 8]'@“ =0. (2.57)

If the associated magnetic fluzes,

21
T = dtgdt; g, (2.58)
0

vanish, there exists smooth periodic vector field By(t) such that €y = OB — 0By, and
B ()] < m(n — 1)sup, g |Cp(r)]. (2.59)

In fact, R, on the multi-dimensional torus 7™ = U(1)* x &y turns out to satisfy
all the premises of the above lemma and a solution of the integrability condition follows
immediately from the lemma, which corresponds to the finite-volume correction term &,
for U(x, 1) = Vi) (2, 1) Up) (2, 1) A(z) A(x + 1)~ with the longitudinal variation nﬁ(ac):8

() =L m(y) + Y 0uGrlx — y)m(y). (2.61)
yel’ yel’

It is then extended to the transverse degrees of freedom by the integration along the one-
parameter family

Uy, 1) = Vi (, 1) 45 @ Uy (@, ) Al) Az + @)™ (£ €[0,1]) (2.62)
as follows: .
677 = 617L’t:0 —l—/o dt D‘im\@:A;{. (263)

This completes the construction of the finite-volume correction term &,,.

3. A simple construction of the mesure term on the finite volume lattice

In the original construction by Liischer [Bf], although the proof is constructive, the explicit
formula of the measure term turns out to be complicated. In particular, it is based on the
separate treatment of the part definable in infinite volume and the part of the finite volume
corrections. Therefore it does not provide a formulation which is immediately usable for
practical numerical applications.

8G1(2) is the Green function defined by

0,0,Gr(z) =6.0—L", Y Gr(z)=0. (2.60)

zel

— 11 -



In this section, we describe our construction of the measure term on the finite volume
lattice. We fisrt discuss the parametrization of the link fields in finite volume and their
variations. We next state two useful results which hold true in finite volume: the gauge
anomaly cancellation in finite volume and the property of the curvature term for the Wilson
lines. Using these results, we write down a closed formula of the measure term directly
within the finite volume theory. In our construction, the Wilson line degrees of freedom of
the link field (torons) are treated separately to take care of the global integrability. The
part of local counter term is then explicitly constructed in finite volume with the local
current associated with the cohomologically trivial part of the gauge anomaly. Only in
the final step to establish the locality property of the measure term current, we follow
the procedure to separate the part definable in infinite volume from the part of the finite
volume corrections as in the original construction [Bg].

3.1 Parametrization of the link fields and their variations in finite volume

In our construction of the measure term in finite volume, we adopt the parametrization of
the link fields given by eq. (2.54). When a link field U(z, 11) is parameterized by eq. (2.54),
the parametrization is unique and the each factors, A7 (x), Uy, (z, ) and A(x), may be
regarded as the smooth functionals of the original link field U(z, u).

Accordingly, the variation of the link field,

5,U (@, 1) = i () U, ), (3.1)
may be decomposed as follows:
. A A
(@) = 0y (2) + Nujw) () + 1, (@) (3.2)

ng(x) is the transverse part of 7, (x) defined by

Imp(x) =0, D ni(x)=0, (3.3)
zel’

which may be given explicitly as

i (x) =) Gz — y)5(0anu(w) — Ouna())- (3-4)

yel’

Mpa[w] (x) is the variation along the Wilson lines defined by

Nufw] (LE) = Z Nw) 5;w 5:(:V,L—17 Nw) = L Z nu(y)' (35)
v yel

nﬁ (z) is the variation of the gauge degrees of freedom in the form,
77;[2(37) = — 0wy (), wy(0) = 0. (3.6)

This decomposition is also unique by the following reason: for an arbitrary periodic vector
field n,(x), the vector field defined by a,(z) = n,(x) — ng(aj) — Tyu[w] (7) has the vanishing
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field tensor d,a,(x) — Oya,(x) = 0 and the vanishing wilson lines ZSL:_(} ay(x + sf) = 0.
Then, the sum wy,(x) of the vector field a,(x) along any lattice path from x to the origin
x = 0 is independent of the chosen path, periodic in = and w,(0) = 0. It gives the gauge
function which reproduces a,(z) in the pure gauge form, a,(x) = —0d,wy,(x). This proves
the uniqueness of the decomposition. The action of the differential operator J, to each
factors, AZ(:E), Ulw) (@, 1) and A(z), is then given as follows:

AL (x) = ) (), (3.7)
57]U[w] (‘7:7 N) = inu[w] (Z’) U[w] (Z’, ,u),
IpA(x) = iwy(z) Az).
3.2 Useful results in finite volume
3.2.1 Gauge anomaly cancellation

In finite volume, the U(1) gauge anomaly is given by the formula,

qp(x) =tr{Q@y(1 — Dr)(z,2)}  (z€l), (3.10)
which is topological [}, [3, [4] in the sense that
Z qr(x) = integer. (3.11)
zel

For this gauge anomaly in finite volume, it is possible to establish the similar result as the
lemma [I:

Lemma 5. For the anomaly-free multiplet satisfying the condition eq. (-1), the U(1) gauge
anomaly q; (x) has the following form in sufficiently large volume L*:

qr(x) = al’jk:“(:n) (x el), (3.12)

where ky(x) is a local, gauge-invariant current, which can be constructed so that it trans-
forms as the axial vector current under the lattice symmetries.

This result was first obtained by combining the result in the infinite lattice,

eq. (2-49) [BH, b4, B3], and the result of the analysis of the finite volume correction 7(x) [56].
Namely,

ku(x) = ku(z) + Aky (), (3.13)

where Ak, (x) satisfies
| Ak, ()| < kgL¥2eL/e (3.14)

for some constants k3 > 0, 3 > 0 and
r(z) = 0,k (z) (x el) (3.15)

in sufficiently large volume L*. However, as shown in [@], it is possible to derive the
same result directly from the gauge anomaly in finite volume ¢z, (z) without the separate
treatment of g(x) and r(z). This work also provides a procedure to work out the local
current k,(z) explicitly, which can be implemented numerically [5§].
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3.2.2 A solution of the integrability condition for the Wilson lines

The curvature terms associated with the Wilson lines have special properties which turn
out to be useful in the construction of a solution of the integrability condition eq. (2.29).

(]

Let us parametrize the Wilson lines U, (x, 1) defined by eq. (2.56) as
wy, = exp(it,), t,€[0,2m) (u=1,2,3,4), (3.16)

and the variational parameters in the directions of the Wilson lines as

1 _
)‘H(V) (x) = 7 Oy, U[w] (x,p) - U[w](ﬂj,,u) L= 00z, L—1- (3.17)
Then the curvature term for the Wilson lines reads

iTry, {15_ [Br,, P 5%)15_]} = iTry, {P_ 0, P, atyﬁ_]}

U:U[w] V[m] U:U[w]‘/[m]

= Q:uy(t), t = (tl,tg,tg,t4). (3.18)
Then, the following lemma holds true:

Lemma 6. In anomaly-free theories, the curvature term for the Wilson lines €, (t), which
possesses the properties

€ (t) = —Cuu(?), OuCup(t) + 0, pp(t) + 9 (t) = 0, (3.19)

satisfies the bound
€, ()] < kyLVie™L/e (3.20)

for certain positive constants k4 and vy. For a sufficiently large volume L*, it then follows
that

2 2
/ dt, | dt, €u(t) =0, (3.21)
0 0
and there exists smooth periodic vector field 20,,(t) such that
Cuw(t) = 0,20,(t) — 0,20,(t), 125,,(t)] < 3m supy ., [€ ()] - (3.22)

The proof of this lemma is based on the fact that in infinite-volume the periodic link
field which represents the degrees of freedom of the Wilson lines can be written in the
pure-gauge form,

U] (7, 1) = Ap) (2) Ay (2 + )L Apy(z) = H(wu)”“ forz —nL e, (3.23)
n

and therefore the gauge-invariant function of the link field in infinite volume is actually in-
dependent of the degrees of freedom of the Wilson lines. In fact, from egs. (2.33) and (2.3§),
¢, may be written as

€ =TT {QrP- 02, POy P-1} + Fn 00 (3.24)
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where D‘b\(u) A satisfies the bound

‘mmwu)‘ < kaLVie e (3.25)

for some constants k4 > 0, v4 > 0 and Cy > 0. We then recall the fact that there exists the
measure term R, = > - nu(z)j;(2) given by eq. (R.3§), which satisfies the integrability
condition eq. (B.39). The current j7(z) is defined for all admissible gauge fields in infinite
volume and it is local and gauge-invariant. Therefore, as discussed above, the current
];(:E) is actually independent of the Wilson lines and the curvature of &, evaluated in the
directions of the Wilson lines vanishes identically. Namely,

I {Qpp_ [6>‘(u)p_’ 5)\(V)p_]} = (5)\(u)ﬁ)\(u) — 5)\(1/).@)\(“) = 0. (326)
Then one can see that the curvature for the Wilson lines, €, itself satisfies the bound
eq. (B-20) and because of this bound, the two-dimensional integration of the curvature,
which should be a multiple of 27, must vanish identically for a sufficiently large L. The
existence of the smooth periodic vector field 20,(t) then follows from the lemma [ (the
lemma 9.2 in [BG]).

The properties of the curvature term €,, for the Wilson lines given by eq. (B.19)
and (B.20) are useful because it implies that €, itself satisfies the premise of the lemma [
(the lemma 9.2 in [Bg]) and by using the lemma, one can construct a solution of the
integrability condition,

{5AuoﬁUV“5Auoﬁnﬂ}‘U:UWﬂmﬂ = G (3:27)

from €, directly. Explicitly, it may be given by the formulae,

1 27 (t1,t2,t3)
QU4 = — dr4 / {dT‘1Q:14 + dT2€24 + dr3€34},
0

2T 0
1 27 (t1,t2)
—/ d?”g/ {dT1¢13+dT2€23} ,
2 0 0

tq t4 2m
Ws = / dry€ys — —/ drs@ys +
0 27'(' 0 a=0
4=

t4 t4 21
Wy = / drs€yo — — / drs€ys
0 27 Jo

t3 t3 27
+ [ dr3Czp — — d7“3¢32] +
0 2 0 ta=0

1 2T (tl)
% /0 drg ) {d’r’lQ:lg} s

ta=t3=0
tq t4 27
Qﬁl = dr4€41 - dr4€41
0 27 Jo

t3 ts 2T to to 2m
+ |: dr3€31 - — dT3€31:| + [ dT‘QQ:gl - — d’r’2¢21:| .
0 27 Jo t4=0 0 21 Jo ta=ts=0
(3.28)

It follows from the properties of €, that this solution is periodic and smooth with respect
to the Wilson lines U}, and satisfies the bound

190, | < ks Le™E/e, (3.29)
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for certain positive constants k5 and vs. It also follows that this measure term is gauge
invariant. Then one may introduce the linear functional of the variational parameters in the
directions of the Wilson lines 7,,,)(z) at the gauge field U(x, j1) = Uy (, ) Vi (2, 1) by

Wy | U=Uj Vigw =110 Zmy (3.30)

This provides the measure term at the gauge field U(x, 1) = Uy (7, ) Vi) (2, 1)

3.3 A closed formula of the measure term

We now construct the measure term for the generic admissible U(1) gauge fields in the
given topological sector U[m]. For this purpose, we introduce a vector potential defined by

- 1 1

Al (x) = Ag(x) - ;8,; [ln A(x)}; 7 InA(z) € (—n, ], (3.31)
and choose a one-parameter family of the gauge fields as

Us(, p) = 5@ Upy (2, 1) Vi (2, 1), 0< s < 1. (3.32)

Then we consider the linear functional of the variational parameter 7, (z), which is given
in terms of quantities defined on the finite-volume lattice:

~

=1 ds TrL P_[8,P_,6 P_]}
+0y / ds Y )ku(x)} + Wy | U=Vt Vi 1= (3.33)
mel"

where k() is the gauge-invariant local current which satisfies 9k, (x) = ¢, (=) and trans-
forms as an axial vector field under the lattice symmetries. mn’U:U[w]V[mm=n[w] is the
additional measure term at the gauge field U = Uy, V), with the variational parameters
in the directions of the Wilson lines 7,1, (). The current j(z) defined by eq. (B.33),

£ =Y nu@)js (@), (3.34)

zel

may be regarded as a functional of the link variable U(z, ) through the dependences on
flg(x), A(z) (InA(x)), Ulu) (z,p) and Vi, (@, 1) The action of the differential operator 4,
to the vector potential A} (z) is evaluated as

300 (a) = by A% @) = 0 [N A | = @) = D)
= Uu(ﬂf) = Nyfw) (LE), (335)

and the variation of Us(z, 1) is given by

5?7US($7 /L) =1 [S(Wu(x) = Nyfw] (:E)) + Nufw] (:E)] Us(l‘, :u)' (3'36)
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The linear functional so obtained, however, does not respect the lattice symmetries.
(The first- and second- terms in the r.h.s. of eq. (B.33) transform properly, but the third
term does not respect the lattice symmetries.) In order to make it to transform as a pseudo
scalar field under the lattice symmetries, we should average it over the lattice symmetries
with the appropriate weights so as to project to the pseudo scalar component. Namely, we
take the average as follows:?

1
£ = 9441 Z det 2%’U—>{U}R*1,m—>{nu}”1' (3:37)
ReO(4,Z)

Our main result is then stated as follows:

Lemma 7. The current jg,(x) defined by eq. (B-33),

£ = nulx)js(x),

zel

fulfills all the properties required for the reconstruction theorem except the transformation
property under the lattice symmetries. It may be corrected by invoking the average
eq. over the lattice symmetries with the appropriate weights so as to project to the
pseudo scalar component.

3.3.1 Proof of the lemma [j

Although it is quite similar to that of theorem 5.3 in [Bf], we give the proof of the lemma, [
here for completeness.

1. Smoothness. By construction, jj(z) is defined for all admissible gauge fields. It
depends smoothly on A (z) and Up(z, 1) because P— and ky, are smooth functions
of Us(x, ). Although A} (z) is not continuous when A(z) = —1 at some points z
because of the cut in In A(z), its discontinuity is always in the pure-gauge form

disc.{AL(:E)} = —0w(x); w(0) =0, (3.38)

where the gauge function w(x) takes values that are integer multiples of 27. Then,
any smooth functionals of fl;i(a:) are smooth with respect to the link field U(z, u), if
they are gauge-invariant under the gauge transformations A (v) — A (z) + duw(x)
for arbitrary periodic gauge functions w(z) satisfying w(0) = 0. The current j;(z) is
indeed gauge-invariant under such gauge transformations. Namely, taking the gauge
covariance of P_ (x,y) and the gauge invariance of k,(x) into account, the change of

°In doing the average, one should note the fact that under the lattice symmetries the Wil-
son lines Uy (x, ) are transformed to other Wilson lines Up,j(x,p) modulo gauge transformations,

{Uw) (:tmu)}]r1 = U[,ﬁ/](nu)A(:c)A(m + f)~". Accordingly, the variational parameter 7,[,)(z) is trans-

formed as {n,(z)}7 t o Nufw'] (#) — Opw(x) with a certain periodic gauge funciton w(z).
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sz under the gauge transformations is evaluated as

/ldsTr{P_[[wQ,P 6, P-] }+/ ds > Opw(x) ok () (3.39)
0

zel

_/0 dSTr{wQénP_}Jr/ ds > Opw(x) Ok ()

zel

1
_ / ds 3" w(@) 8, {~tr{QsD1 }a, 7) — Fu(a)} = 0,

0 zel
where the identity ]5_(577]5_]5_ = 0 has been used.

. Gauge invariance and symmetry properties. The gauge invariance of jﬁ(a:) has been
shown above. The transformation properties of jj(z) under the lattice symmetries
are also evident from the average eq. (B.37).

. Integrability condition. From the definition of £7, eq. (B-33), one finds immediately
that the second term does not contribute the curvature 5,,22 — 6¢£5 and the third
term gives the curevature term at the Wilson lines, U = Up,V};,), With the variational

parameters 7, ¢ = ny,]. Taking the identity Trp, {51]5_52]5_53]5_} = 0 into account,
the curvature is evaluated as

1
5y L2 — 0L =i / ds Tr {15_ 0,05 P-,6.P_] — P_[5:05P_, 57715_]}
0

+iTe { P[5, P, 5cP-]}| S

- /dsaTr [y, P-] |

+zTr{P_[5,7P_,5<P_]HU:U[ s (3400

After the integration in the first term, the contribution from the lower end of the
integration range exactly cancels with the second term because the variational pa-
rameters in this contribution is restricted to 7,(,(v):

(577U5((L', :u') US('Z'7 M)_I‘SZO = [S(Tlu(x) — Nufw] (‘r)) + umm)| (x)]SZO = Nufw] (‘T) (341)

. Anomalous conservation law. If one sets n,(x) = —0,w(x) (where w(z) is any lattice
function on I" with w(0) = 0), the left-hand side of eq. (B.33) becomes

> w(@) o5 (x). (3.42)

zel

On the other hand, using the identities

5,P_ = is [WQ,P_} . Opku(z) =0, (3.43)
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the right-hand side is evaluated as

/dssTr{wQ@P} /dsZan

zel

= = w(@) tr{Qus D x) + / ds 3" w(@) {r{QsDr}(w,x) + Ok(a)}

zel 0 zel

=Y w(@) tr{Qys(1 = Dp)}(, ), (3.44)

zel

3.4 Locality property of the measure term

The locality property of the current jj(z) may be examined by following the procedure to
decompose the measure term eq. (B.33) into the part definable in infinite volume and the
part of the finite volume corrections:

£ =8 + 65, (3.45)

where
1 A A A
R =i /0 ds Tr{QpP_[asP_,énP_]}

18, [ ds > {A;(x) %(w)} , (3.46)

1

+oy | ds S {A(@) Aku(@) } + Splo=viVgmmny (B:47)

From egs. (R.36), (B.14), (B.29) and ||A£(:E)|| < kgL* (kg > 0) [BF], one can infer
|65] < reLe ™2 ]| (3.48)

for some constants k7 > 0, v7 > 0.
As to &) defined by eq. (B.44)), if one introduces the truncated fields

n nu(z) if o —Ln €T,
= 3.49
5 (@) { 0 otherwise, (3.49)

for any integer vector n, it may be rewritten into

1
Ry = z/o ds Tr { P[0s P, 6,0 P]}

1
+ /0 ds " {(ng(x) 12 (@) (@) + AL (2) 6,0 /;M(x)}. (3.50)

xeZ4

One can see from this expression that ﬁ% is defined in infinite volume for the variational
parameter with a compact support ng(x). Then the following lemma holds ture:
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Lemma 8. & is in the form

where SZ[m} is the linear functional defined in infinite volume for any variation parameter
nu(x) with a compact support given by

Lm) = /0 s [z‘Tr{P[c%P, 5P} + Y {m(x) Fu(z) + A(x) 6, ’;“(”“’)Huszem -

xeZ4

= > (@) (@). (3.52)

xeZ4

flu(az) here is the wvector potential which represents the dynamical degrees of freedom of
the link field in the given topological sector U[m], U(x,pn) = U (2, p) Vi) (z, )™, with the
following properties,

U(':UHU’) = eiAM(x)Vv[m](x’:u)’ |"Zl,u($)| < ﬂ-(l + 4||$||)7

~ ~ 27T,
Fu(z) = 0,4, (x) — 0,A,(x) + LQ” :

(3.53)

and any other field with these properties is equal to fl“(:n) + Ouw(x), where the gauge
function w(x) takes values that are integer multiples of 2.

The current j;[m} (z) is quite similar in construction to jj;(z) defined by eq. (R.49) except
the fact that Vi, (z, i) is chosen as the reference field at s = 0. In particular, j;[m} (x) is
invariant under the gauge transformations A, (xr) — Au(x) + Ouw(x) for arbitrary gauge
functions w(zx) that are polynomially bounded at infinity. Then, the locality property of

Jpim) (z) can be established by the same argument as that given in [Bf], or in section R.5.1]
3.4.1 Proof of the lemma §

The proof of the lemma § may be given as follows. By noting eq. (B.23), we consider to
change the one-parameter family of the link fields for the s-parameter integration by the
shift of the vector potential,

A(o) — o) = A(0) ~ 0, 00(@) s Q) = sAp@),  (354)

so that the degrees of freedom of the Wilson lines are included in the vector potential.
Since one may express Us(z, ) as

Us(w, ) = &80 e @)= @+ Vi (7, 1)

= i Aul0) 1= (D) (1= o) Y1 (). (3.55)
Accordingly, we have
B A (1-9) . i —(1-s5)
asP|US:Cz‘sA;L Utao) Viem] = A[w] {83P — Z[Q[w}Qv P]}US:C“‘AH Vi) A[w} s
_ (1—8) . —(1—8)
5nP|Us:Ci5A;L U[w] ‘/[m] - A[w] {577P+Z(1_8)[5WQ[1U]Q’ P] }US:CisAH V[m] A[w] . (356)
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Then, the first term in the r.h.s. of eq. (B.5() reads

1 1
z/ ds Tr { P[0, P, 5,0 P]} = z/ as T {PIOP 0PI} |y _ny,
0 0 s=¢ m
1
—l—/o dsTr{QFP[[Q[UJ}Q,P],%P]]} ’Us:eisAu Vi
1
_ /0 ds (1= ) T {QrPIO:P. [0y Q. P} iy,

1
+i [ ds(1=5)T{@r P20 Q. P15 2 Q Py, iy, -

(3.57)
In the r.h.s. of eq. (B57), the second term may be evaluated as follows:
/01 ds T {Qr P[4 Q. P).5,P))} = /01 ds Tr { P[4 Q. P). 5,0 P}
_ —/ldsTr{Qw]QcS .P)
_ / ds 37 {(=0, 0y () 8,0 Fu2)} - (3.58)
rEZ4

In this evaluation, we should note that although Qp,(z) = >_, n,Inw, (x —nL €T) is
not periodic, the operator P[[2,@Q, P],d, P]] is translational invariant,

Pl[Q1)Q, Pl, 0y PlI(2,y) = Pl[Qu)@, P, 6y Pl](z +noL,y +noL) (3.59)

for any constant integer vector ng, because the shift in Q) (), Qp(z + nol) — Q) (z),
is independent of z and does not contribute to the operator. As to the third term in the
r.h.s. of eq. (B.57), we introduce the truncation of the s-differential as

n ~ JiA, () Us(w, ) ifx—LneT,
(0s)"Us(, 1) = { 0 otherwise, (3.60)
for any integer vector n. Then, it may be evaluated as follows:
1
—/ ds (1 — s) Tr {Qr P[0, P, [6,9,,Q, P]] } (3.61)
0

1
- _/0 ds (1= s) Tr { P[(95)° P, [, Q, P]I}

1 ds (1 — ) Tr {0, Q (95)°P}

0
1
:/ ds (1= 5) S {0y(~0u0) (@) (95) Fu(x)}
0 TEZA
1
— [ s 9) Yy ) 0. (o)
0 zel
SRS S CTETRNVRNID pF eI AET .
624 1'624

— 21 —



In the last two steps above, we have used the relation

577(_8HQ[U)} (‘/E)) = (I/Z) 5?7U[w] (‘/Ev /L) U[w] (l‘, :u)_l = Nyfw] (l‘), (3'62)

and the fact that the local, gauge-invariant current k,(z) at the link field U(x,u) =
Vim] (x, ) with the constant field tensor is independent of = and may be set to zero:

Fu@)| ey, =0 (3.63)

The fourth term in the r.h.s. of eq. (B.57) turns out to vanish identically: by noting the
hermiticity of P(x,y), this term reads

1
i /O ds (1= 8) Tt {QrP[[Q @ P), 6,20 @ P)]}

1
, 1
= Z/ ds (1 - 8) §T1" {QF (PQ[w}Qp(an[w]QP - P(SnQ[w}QPQ[w}QP
0
~PQQ 8y QP + Py Q ujQP) }

1
= i/o ds(1—s) % S/ mwp]ney L — Lo — Ju + Jugl s (3.64)
ny

Ly = Z Z tr {P(z,y +nL)n,P(y +nL,z+n'L)n,P(z+n'L,z)}, (3.65)

z,y,z€l’ n7n’EZ4

S = Z Z tr{P(z,y +nL)n,n,P(y +nL,z)}, (3.66)
w7yer nez4

but, I, and J,, are both symmetric with respect to the indices p,v. Combining these
results and using the gauge invariance of &, (),

Eu(x)’US:CisAL v = l?:u(a:)]Us:eiSAu Vi, (3.67)

[m) )’
in the second term of the r.h.s. of eq. (B.5(), we finally obtain

1
7 = /0 ds [iTr {P[O.P, 6,0 P1} + 3 {@) Fu(e) + Ay (@) 3,0 Fol)

z€ZA
(3.68)
As the final step, we cast the vector potential flu(m), which represents
U(w, 1) = ¢4 @A) Az + 1)~ Uy (2, 1) = U@, ) Vi (2, )", (3.69)

the dynamical degrees of freedom of the link field in the given topological sector i[m], into
the complete axial gauge with the properties eq. (B.53), by applying the same construction
as in the lemma § [BJ] to U(z,u). Since K} is invariant under the gauge transformation
A, (z) — Ay(x)+0,w(z) for arbitrary gauge functions w(x) that are polynomially bounded
at infinity, as easily verified, this change of the gauge for flu(az) does not alter &) itself.
This results in eq. (B.51)) of the lemma f.
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4. Discussion

We have given a closed formula eq. (B.39) of the measure term on the finite volume lat-
tice, which fulfills all the required properties for the reconstruction theorem in the gauge-
invariant formulation of U(1) chiral gauge theories [Bf]. Although it is intended for the
use in a practical implementation of U(1) chiral lattice gauge theories, it also provides, we
believe, a simpler point of view on the theoretical structure of the formulation.

A comment is in order about the relation between the measure term £ constructed in
this paper and the measure term £, given in the original construction [Bg]. Since both terms
satisfy the integrability condition and the anomalous conservation law, one may expect that
they are related each other by the variation of a certain gauge-invariant local term as

£ =2+ 6,D(). (4.1)
zel
In fact, as to the terms definable in infinite volume, it is possible to work out the difference
between the linear functionals RZO = 2;0[m] and R0 = 2;0 explicitly and the result is
given in the following form:

xeZr

where 7 }(a:) is the local field given by

(m

") = /0 it /0 s it (P0,P,0.P)) ()

Hs A+ [Au(x)— A, (2)]) sk, (2) —tAu(x)atk‘u(x)} .(4.3)

UtyS:eit(sAHA—A])

The relation eq. (Q) implies that the resulted Weyl fermion measures, or the effective
actions induced by the Weyl fermion path integral, differ by the gauge-invariant local
term Y, . D (x). We do not know, however, if there exists a closed expression of D(z) in
terms of only the quantities defined in finite volume like eq. (B.33) for £9.

In the formula of the measure term, eq. (B.33), we have adopted the transverse gauge
for the vector potential flL(m) = Ag(a:) — 19, {ln A(az)] such that

ezAL(:c) _ ezAE(x)A(x)A(x _’_ﬂ)—l
= U($7M) Vv[m] (:Enu)_l U[w}(xmu)_l = ﬁ/(JE’M). (44)

Since the measure term (current) is gauge-invariant, one may choose different gauge con-
ditions. For example, one may adopt the complete axial gauge, inspired by the following
lemma (L is assumed to be an even number):

Lemma 9. There exists a periodic vector potential flL(x) such that

@) = (2, ), (4.5)
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L L
- 1 . A
Z Al (x+sf) = Z In H U'(x + sf, ,u)] , (4.7)
s=1 s=1
and
A, ()] < 71+ A — ) for o —aoh| £ L/2-1 (=123, , o
|AL($)| < 7m(1+46L? +2L(1 +3L?)) otherwise. :

o 18 a reference point which may be chosen arbitrarily. Moreover, if flﬁ(x) is any other
field with these properties we have

le(x) = fl;(:n) + Opw(x), (4.9)
where the gauge function w(x) is periodic and takes values that are integer multiples of 2.

The proof of this lemma is given in appendix [Al Note that the variation of the vector
potential in this gauge is also given by 6, 4], (z) = nu(z) — Ny ()

Given the local current jZ(x), the basis vectors of the Weyl field can be constructed
explicitly as follows [B7:

lel[m] W_l lfj = 17
. = 4.10
v (@) { Q1Vj[m) otherwise, ( )
where, along the one-parameter family of the link fields in [m],
U, ) = 5@ Upy (0, 1) Vi (2, 1), 0< <1, (4.11)
W is defined by
1
weeo{i [ash @ =000 Ui, (412
Q; is defined by the evolution operator of the projector P, = P_ U satisfying
=U;
Qi = [0, P, ] Qy, Qo =1, (4.13)

and v;,, are the basis vectors at the Wilson lines Upj(, 1) Vi (z, 1) (£ = 0).2° Towards
a numerical application of U(1) chiral lattice gauge theories, a next step is the practical
implementation of this formula: a computation of W, the implementation of the operator
@+ and the construction of vj,,). This question has been addressed partly in our previous

works [5, 7, [[§]. We will disscuss this question in full detail elsewhere.

OWith this definition, the explicit expression of W is given by

W:exp{i/o ds Y AL () k,t(:c)u,ﬂg/}. (4.14)

zel
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A. Proof of the lemma J

For simplicity, we set the reference point to the origin, xg = 0. The extention of the
following proof to the case with a generic reference point zq is straightforward.
We introduce a vector potential

ay(z) = %ln [ﬁ'(:ﬂ,,u)} , —m <ay(x)<mw (A.1)
where
0 (2, 1) = 50 A@)A (e + )7 = Ul p) Vig () V()™ (A2)
and then note that
27Ty,

F,W(x) = audu(x) - &/&u(x) +

T 4 2y (@), (A.3)

where 7, (x) is an anti-symmetric tensor field with integer values which satisfies

8[pﬁuu} (:E) = 0, (A4)
L—1
> i@+ sfi+t0) = 0. (A.5)
s,t=0

The Bianci identity of i, () follows from the Bianci identity of F),, () which holds true
for e < /3.
We now construct a periodic integer vector field m,(x) such that 9,m, — 0,m, = M.
For this purpose, we try to impose a complete axial gauge where mq(x) = 0, ma(z)|z =0 =
0, Mm3(2)| 3, =29=0 = 0, M4(x)|z; =2o=25—0 = 0 and to obtain the non-zero components of the
field by solving
Oy (x) = ny(x) at x1=---=2,1=0 (A.6)

for p = 3,2,1 (in this order) and v > u. However, the resulted vector potential is not
periodic. Let us denote the restriction of the solution on to I' by m,(x),

Ty,—1
mu(m) - Z Z / ’FL;U'V(Z(V)) — =0 (A7)
v<p t,=0 Tr1==wy 1=
where xz € T, L) = (z1,...,ty,...) and
! T f@) (=)
2 =10 (r:=0) . (A8)
e Yule, (D f(@) (2 < —1)
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Although it satisfies the bound |m,(z)| <2 || « ||, it only satisfies

ﬁuu = 8uml/ - al/mu + Aﬁum (Ag)
L-1
Adyy () = 0y, 1/2-1 Z ﬁw('z(u)) iy =0 (A.10)
7,=0 e

where v > p and £, = t, mod L. We note that Afi,, (z) has the support on the boundary
of I'. We then use the lattice counterpart of the lemma 9.2 in [Bg], to obtain the periodic
integer vector potential Am,,(x) which solve 0,Am, — 9,Am,, = An,,

z,—1 L-—1

Amy(x) = 0g, 1,/2-1 Z Z / Z Ty (2))

V> t,=0 f‘,‘:()

(A.11)

)
Ty y1=--=0

The desired periodic integer vector potential 1m,, () is now obtained by m,(x) = m,(x) +
Amy,(x), which satisfies the bound

(A.12)

[mpu(x)] <2 = | for z, #L/2-1(v=1,2,3),
|mu(z)] <3L%  otherwise.

Finally, we note that the differences of the Wilson lines between U’(z, 1) and a,, () +
21y, (x) are integer multiples of 27r. Namely, one has

L L
H U'(x + sfi, u)] — Z {a,(z + sp) + 2mmy, (z + sp)} = 2me,(x),  (A13)

s=1
where ¢, (z)(n = 1,2,3,4) take integer values. One can also infer the bound

leu()] < L(1+ 3L2). (A.14)
Then, the vector potential with the desired properties is obtained by

Al () = ay(x) 4 2wy, (2) 4 0y, 121 21, (2). (A.15)

If there exists a vector potential AZ(x) with the same properties as AL(w), the vector
potential defined by the difference AJ(z) — Aj,(z) has the vanishing field tensor and the
vanishing Wilson lines. Such a vector potential should be in pure gauge form,

flﬁ(m) — flL(az) = Opw(x), (A.16)

where the gauge function w(z) is periodic and takes values that are integer multiples of 2.
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